Designing small, nonsugar activators of antithrombin using hydropathic interaction analyses.
نویسندگان
چکیده
Conformational activation of antithrombin is a critical mechanism for the inhibition of factor Xa, a proteinase of the blood coagulation cascade, and is typically achieved with heparin, a polyanionic polysaccharide clinically used for anticoagulation. Although numerous efforts have been directed toward the design of better activators, a fundamental tenet of these studies has been the assumed requirement of an oligo- or a polysaccharide backbone. We demonstrate here a concept that small nonsaccharidic nonpolymeric molecules may be rationally designed to interact with and activate antithrombin for enhanced inhibition of factor Xa. The rational design strategy is based on a study of complexes of natural and mutant antithrombins with heparin-based oligosaccharides using hydropathic interaction (HINT) technique, a quantitative computerized tool for analysis of molecular interactions. A linear correlation was observed between the free energy of binding for antithrombinminus signoligosaccharide complexes and the HINT score over a wide range of approximately 13 kcal/mol, indicating strong predictive capability of the HINT technique. Using this approach, a small, nonsugar, aromatic molecule, (minus sign)-epicatechin sulfate (ECS), was designed to mimic the nonreducing end trisaccharide unit DEF of the sequence specific heparin pentasaccharide DEFGH. HINT suggested a comparable antithrombin-binding geometry and interaction profile for ECS and trisaccharide DEF. Biochemical studies indicated that ECS binds antithrombin with equilibrium dissociation constants of 10.5 and 66 microM at pH 6.0, I 0.025, and pH 7.4, I 0.035, respectively, that compare favorably with 2 and 80 microM observed for the natural activator DEF. ECS accelerates the antithrombin inhibition of factor Xa nearly 8-fold demonstrating for the first time that conformational activation of antithrombin is feasible with appropriately designed small nonsugar organic molecules. The results present unique opportunities for de novo activator design based on this first-generation lead.
منابع مشابه
Hydropathic interaction analyses of small organic activators binding to antithrombin.
Recently we designed the first small organic ligands, sulfated flavanoids and flavonoids, that act as activators of antithrombin for accelerated inhibition of factor Xa, a key proteinase of the coagulation cascade [Gunnarsson and Desai, Bioorg. Med. Chem. Lett. (2003) 13:579]. To better understand the binding properties of these activators at a molecular level, we have utilized computerized hyd...
متن کاملExploring new non-sugar sulfated molecules as activators of antithrombin.
New non-sugar, small, sulfated molecules, based on our de novo rationally designed activator (-)-epicatechin sulfate (ECS), were investigated to bind and activate antithrombin, an inhibitor of plasma coagulation enzyme factor Xa. For the activators studied, the equilibrium dissociation constant (K(D)) of the interaction with plasma antithrombin varies nearly 53-fold, with the highest affinity o...
متن کاملInteraction of designed sulfated flavanoids with antithrombin: lessons on the design of organic activators.
Recently, we designed (-)-epicatechin sulfate (ECS), the first small nonsaccharide molecule, as an activator of antithrombin for the accelerated inhibition of factor Xa, a key proteinase of the coagulation cascade (Gunnarsson, G. T.; Desai, U. R. J. Med. Chem. 2002, 45, 1233-1243). Although sulfated flavanoid ECS was found to bind antithrombin with an affinity ( approximately 10.7 microM) compa...
متن کاملOn designing non-saccharide, allosteric activators of antithrombin.
Antithrombin, a plasma glycoprotein serpin, requires conformational activation by heparin to induce an anticoagulant effect, which is mediated through accelerated factor Xa inhibition. Heparin, a highly charged polymer and an allosteric activator of the serpin, is associated with major adverse effects. To design better, but radically different activators of antithrombin from heparin, we utilize...
متن کاملNew antithrombin-based anticoagulants.
Clinically used anticoagulants are inhibitors of enzymes involved in the coagulation pathway, primarily thrombin and factor Xa. These agents can be either direct or indirect inhibitors of clotting enzymes. Heparin-based anticoagulants are indirect inhibitors that enhance the proteinase inhibitory activity of a natural anticoagulant, antithrombin. Despite its phenomenal success, current anticoag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medicinal chemistry
دوره 45 6 شماره
صفحات -
تاریخ انتشار 2002